Orthogonal ubiquitin transfer through engineered E1-E2 cascades for protein ubiquitination.

نویسندگان

  • Bo Zhao
  • Karan Bhuripanyo
  • Keya Zhang
  • Hiroaki Kiyokawa
  • Hermann Schindelin
  • Jun Yin
چکیده

Protein modification by ubiquitin (UB) controls diverse cellular processes. UB is conjugated to cellular proteins by sequential transfer through an E1-E2-E3 enzymatic cascade. The cross-activities of 2 E1s, 50 E2s and thousands of E3s encoded by the human genome make it difficult to identify the substrate proteins of a specific E3 enzyme in the cell. One way to solve this problem is to engineer an orthogonal UB transfer (OUT) cascade in which the engineered UB (xUB) is relayed by engineered E1, E2 and E3 enzymes (xE1, xE2, xE3) to modify the substrate proteins of a specific E3. Here, we use phage display and mutagenesis to construct xUB-xE1 and xE1-xE2 pairs that are orthogonal to the native E1 and E2 enzymes. Our work on engineering the UB transfer cascades will enable us to use OUT to map the signal transduction networks mediated by protein ubiquitination.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orthogonal ubiquitin transfer identifies ubiquitination substrates under differential control by the two ubiquitin activating enzymes

Protein ubiquitination is mediated sequentially by ubiquitin activating enzyme E1, ubiquitin conjugating enzyme E2 and ubiquitin ligase E3. Uba1 was thought to be the only E1 until the recent identification of Uba6. To differentiate the biological functions of Uba1 and Uba6, we applied an orthogonal ubiquitin transfer (OUT) technology to profile their ubiquitination targets in mammalian cells. ...

متن کامل

Identifying the substrate proteins of U-box E3s E4B and CHIP by orthogonal ubiquitin transfer

E3 ubiquitin (UB) ligases E4B and carboxyl terminus of Hsc70-interacting protein (CHIP) use a common U-box motif to transfer UB from E1 and E2 enzymes to their substrate proteins and regulate diverse cellular processes. To profile their ubiquitination targets in the cell, we used phage display to engineer E2-E4B and E2-CHIP pairs that were free of cross-reactivity with the native UB transfer ca...

متن کامل

Crystal Structure of UBA2ufd-Ubc9: Insights into E1-E2 Interactions in Sumo Pathways

Canonical ubiquitin-like proteins (UBLs) such as ubiquitin, Sumo, NEDD8, and ISG15 are ligated to targets by E1-E2-E3 multienzyme cascades. The Sumo cascade, conserved among all eukaryotes, regulates numerous biological processes including protein localization, transcription, DNA replication, and mitosis. Sumo conjugation is initiated by the heterodimeric Aos1-Uba2 E1 enzyme (in humans called S...

متن کامل

The Ubiquitin and Proteasome Pathway

The ubiquitination and proteasome degradation pathway is a multistep enzymatic cascade in eukaryotes in which ubiquitin is conjugated via a lysine residue at position 48 to target proteins for destruction. Proteins tagged with lysine 48–linked chains of ubiquitin are marked for degradation in the proteasome enzyme complex (Figure 1). Through this pathway, the cell rids itself of excess and misf...

متن کامل

Engineering a ubiquitin ligase reveals conformational flexibility required for ubiquitin transfer.

Protein ubiquitination regulates numerous cellular functions in eukaryotes. The prevailing view about the role of RING or U-box ubiquitin ligases (E3) is to provide precise positioning between the attached substrate and the ubiquitin-conjugating enzyme (E2). However, the mechanism of ubiquitin transfer remains obscure. Using the carboxyl terminus of Hsc70-interacting protein as a model E3, we s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Chemistry & biology

دوره 19 10  شماره 

صفحات  -

تاریخ انتشار 2012